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On the kinematics of short waves in the presence of 
surface flows of larger scales 
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When the resonance condition is satisfied, i.e. that the local group velocity of short 
surface waves matches the local velocity associated with a larger-scale surface flow, it 
is known that the short waves are reflected or trapped by the flow. A typical example 
is the case of short surface waves propagating on long surface waves. By direct 
numerical resolution of the kinematic equations, some aspects of the reflection or 
trapping are first examined. Next, the effects of a second long wave on the trajectory 
of the short waves are considered. It is found that the trajectory is strongly distorted 
in general. Reflection still occurs, having a larger effect on the variation of the short- 
wave wavenumber than when only a single long wave is present. The entrapment 
becomes more sporadic. At short time intervals, a forced Mathieu equation is found 
to govern the short-wave development. This leads to a discussion on a more general 
physical context. 

1. Introduction 
In recent years, the evolution of short surface waves on variable surface velocity 

fields, for instance due to a surface current or to a long wave, has been a topic of many 
papers. This increasing interest is particularly motivated by the need for proper 
interpretation of signals from microwave remote sensing devices used to detect surface 
or underwater motions or obstacles. 

Theoretical work was initiated by Longuet-Higgins & Stewart (1960, 1961) and 
Bretherton & Garrett (1968). This was then extended by many authors with 
applications to specific fields (Basovich & Talanov 1977; Phillips 1981 ; Shyu & Phillips 
1990; Henyey et al. 1988). Some aspects of these contributions were recalled in the 
recent paper of Trulsen & Mei (1993). One of the main results of the investigations 
(Phillips 1981 ; Shyu & Phillips 1990) is the blockage or reflection of the surface waves 
at the points where their group velocities balance the convection by the larger-scale 
flow. 

In the works cited above, a single long wave was often considered. This constitutes 
clearly an ideal situation, not satisfied in many real conditions, and this motivated our 
works, which is devoted to a first step towards multiscale analysis. The work is limited 
to the kinematics aspects, the objective being to look at the blockage process when 
many scales are present. Actually, the case of a short-wave packet over two large-scale 
velocity fields is the main subject considered. This is done by direct numerical 
resolution of the kinematic equations. The case of a capillary-gravity wave over short 
gravity waves (Phillips 1981) is taken as basic example, but, as mentioned in the 
concluding remarks, the author believes that the results are of general interest. 

The case of a single short wave over a single oscillatory surface velocity field is first 
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examined ($2). The blockage or reflection mechanism is of course confirmed but the 
roles of various parameters of the flows as well as the initial conditions are clarified. 
The main new results concern the case of a short-wave packet over two large-scale 
surface velocity fields ($3). This is followed by an attempt to develop approximate 
equations for the short-wave displacement ($4). A driven Mathieu equation is found 
to be an asymptotic form. Finally, some preliminary conclusions and suggestions for 
future work are presented ($5) .  

2. Short waves over one single oscillatory surface velocity field 
Most previous work has been addressed to this simple situation. Detailed aspects of 

the short-wave trajectories will be considered herein by direct numerical solution of the 
kinematic equations. 

As is well known, the presence of a surface current leads to a transformation of the 
short-wave dispersion relation, due to a Doppler frequency shift. The dispersion law 
now becomes 

(1) 

where x and t denote the horizontal coordinate and the time; U is the velocity at the 
water surface; w and k are the short-wave frequency and wave vector; w,(k) is the 
short-wave dispersion law in the absence of the surface velocity. 

Within the framework of the geometrical optics approximation, the kinematics of 
the short waves is governed by the so-called ray equations or Hamilton equations (see 
e.g. Basovich 1979) : 

w(k, X, t )  = w,(k) + k .  U(X, t),  

Note that these equations can be derived directly (Irvine 1987) from the usual 
conservation equations (see e.g. Phillips 1977). In the following, the analysis is limited 
to two-dimensional configurations. 

As a first example, let us consider capillary-gravity waves over a surface current of 
the simple form 

(3) 

U is the surface current velocity, with amplitude, wavenumber and frequency U,, K, 
and 4, respectively. 

U(X, t )  = U(X, t )  = u, cos (K, x- 4, t). 

Then, the capillary-gravity wave dispersion law can be written as 

with 

w(k, X, t )  = o , (k )  + k U ,  cos (KO x - 4, t ) ,  

w,(k) = (gk + yk3)l”, 

(4) 

( 5 )  

g being the acceleration due to gravity and y the ratio of surface tension to water 
density. Equation (4) is a small-amplitude approximation for the dispersion of 
capillary waves over a long gravity wave (Sinitsyn, Leykin & Rozenberg 1973; Phillips 
1981). In this case U, = t., C,, with C, = 4,/K, the phase celerity of the long wave with 
wave steepness t.,. 

In a frame of reference moving at C,, the kinematic equations are 

+ E ,  c, cos KO x - c,, 
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FIGURE 1. (a) -, Examples of WKB phase-space trajectories of capillary-gravity wave packets 
in the field of a single long gravity wave of wavenumber KO = 0.44 rad cm-' (wavelength 
Lo = 14.279 cm) and wave steepness q, = 0.05; ---, separatrix between trapped and untrapped short 
waves. The arrows indicate the short-wave displacement direction. (b )  Velocity-position phase-space 
trajectories corresponding to (a). 

The solution of (6) obviously depends upon the initial ( t  = 0) values of the short- 
wave wavenumber and position, respectively denoted k,  and x,. From the work of 
Phillips (1 98 l), blockage or reflection of the capillary-gravity waves is expected over 
short gravity waves (wavelength of order 10 cm). This can be anticipated, as seen from 
the linear dispersion relation. 

Solutions of (6) were found numerically by using a Runge-Kutta order 4-5 scheme 
with k, ranging from 6 to 25 rad cm-' while x, varies from 0 to half the long-wave 
wavelength. The respective values of KO and eo were 0.44 rad cm-' (Lo = 14.279 cm) 
and 0.05. The results were plotted in terms of trajectories in the (x, k )  phase space, the 
so-called WKB phase space. 

Figure 1 displays the trajectories for various initial positions and wavenumbers. 
Clearly, depending upon x,, the wavenumbers within a certain domain correspond to 
closed orbits. 
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The width of the entrapment zone so defined increases when x, increases from 0 to 
L,/2 and then decreases in a symmetrical way. Clearly, the determination of the 
entrapment domains is of interest. This requires the determination of the separatrix. 

For the present simple situation of a short-wave packet over a single current with 
phase celerity C,, the current is stationary in the frame of reference moving at C,. Then, 
the dispersion relation 

(7) 

gives a first integral of equation (1) ;f is the frequency in the moving frame of reference. 
Instead of solving the system (6) ,  Basovich & Bahanov (1984) used this property to 
construct trajectories of short gravity waves in the (x,k) phase space. 

Note that f,, the initial frequency corresponding to initial wavenumber k,  at initial 
position x,, is 

(8) 

The frequency being constant, the dispersion relation (7) gives 

(9) 

Examination of the trajectories displayed on figure 1 clearly suggests that saddles 
points are located at the crests of the long wave (x = 0 or 27t/K0). Then, a t  given x,, the 
separatrix is determined by looking, from (9), for values of k,  yielding to two equal real 
roots at x = 0 or x = 2x/K0. With 

(gk + yk3)1'2 + kC,(€, cos KO x - 1) = f 

f, = (gk, + y k y  + k, C,(S, cos KO x, - 1). 

k3-  y-lC;(EO cos KO x - 1)ZkZ + ky-'[g + 2f0 C,(e, cos KO x - l)] - 7-If; = 0. 

a, = - f2  -1 OY 5 

Then, k,  corresponding to separatrix is a root of (1 1). The roots, in principle, can be 
found analytically, through lengthy algebra. Here, they were determined numerically. 
The separatrix is displayed on figure 1 (a). 

Figure 1 (b) shows the trajectories of the short-wave packets using the conventional 
velocity (c&position phase space. It is seen that except for packets exhibiting small 
variations of position and velocity (or wavenumber), the so-called ' well-trapped ' 
packets, there is no complete similarity between the wavenumber and the velocity 
variations. This limits the analogy between this problem and the motion for an electron 
in the field of a plasma wave, as shown by Basovich (1979), to only the well-trapped 
short-wave packets. 

From Basovich & Bahanov (1984), it is known that the width of the entrapment zone 
increases with the ratio between the surface current velocity amplitude and phase 
celerity. To specify this in a little more detail for the present situation, trajectories of 
capillary waves in a surface velocity field associated with a Stokes wave at moderate 
steepness were determined. This was done on the basis of the approximation which 
arises from the experimental investigation of Melville & Rapp (1988) showing that for 
a wave steepness up to 0.23, the horizontal velocity u(x, 7, t )  at the surface is reasonably 
predicted by the formula 

(12) 4x3 750 = q(x, 0, 
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FIGURE 2. -, As figure 1 (a) but with en = 0.23; . . . , separatrix at c0 = 0.05; ---, separatrix at 
en = 0.23. (6) Velocity-position phase-space trajectories corresponding to (a). 

where ~ ( x ,  t )  is the surface displacement and w the frequency of the wave. With the 
above value of the steepness of the Stokes wave (wavenumber K = 0.55 rad cm-'), 
figure 2 illustrates the trajectories of capillary-gravity waves in the ( k ,  x) and (cg, x) 
phase spaces. Again, it is seen that similar trajectories in both spaces exist only for the 
well-trapped short-wave packets. As shown on figure 2(a) ,  the entrapment zone is 
indeed much larger at E ,  = 0.23 than at c0 = 0.05. 

Phillips (1981) showed that the situations above are of interest for interpreting 
observational results in laboratory facilities. In a field situation, blockage or reflection 
of short waves is also possible in the presence of a surface current due to internal waves, 
as illustrated by figure 3. The surface current velocity is taken to be of the form 

(13) 
which is a satisfactory representation of the evolution observed, for example, during 
the SARSEX campaign (see Gasparovic, Ape1 & Kasischke 1988). The wavenumber Ki 
and the celerity C, were chosen from among the values observed during this campaign, 
namely, Ki = 0.017 rad m-' (L,  z 370 m) and C, = 0.76 m s-l. 

ui = Ui sech2 Ki(x - C, t), 
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FIGURE 3. For caption see facing page. 
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To stress the importance of the ratio pi = UJC, on not only the width of the 
entrapment zone but also on the wavenumber modulation, two different values of pi 
were chosen. For & = 0.10, it is seen (figure 3 a)  that waves in the I m wavelength range 
(wavenumber in the range 3 to 9 rad m-I) are trapped by the current. The wavenumber 
modulation remains small in the sense that the wavelength stays in the 1 m range. 
Inclusion of surface tension terms in the kinematic equations does not lead to a 
significant change in the results. 

From figure 3(b), at a higher value of pi, that is pi = 0.69 which corresponds to 
values observed during SARSEX, the entrapment zone is increased considerably, now 
including wavenumbers in the range 2 to 26 rad m-’. The wavenumber modulation is 
also considerably increased so that an initial wave in the 1 m wavelength range can be 
reflected as extremely short capillary waves. Figure 3 (b) corresponds to the case where 
the surface tension terms are neglected in the ray equations. Including these terms 
dramatically increases the wavenumber modulation (figure 3 c) : all waves in the 
entrapment zone are now reflected as extremely short capillary waves. 

3. Kinematics of the short waves in the presence of two oscillatory surface 
velocity fields 

The simplest situation of a single short-wave packet over a single oscillatory surface 
current or long wave treated above and also by many other authors is possibly 
unrealistic in many respects. In particular, in practical situations, many short-wave 
components and long-wave or surface current components are often present. 

The corresponding general problem would be extremely complicated to analyse. As 
a first step to consideration of realistic situations, the kinematics of a single short-wave 
packet over two long waves or oscillatory currents are studied in what follows. 

Sinusoidal currents with respective wavenumbers KO and K, phase celerities C, and 
C, and amplitudes 

The dispersion relation of capillary-gravity waves in the field of these currents is now 
C, and pC are considered. 

w(k,  X, t )  = (gk + yk3)l” + k( Po C, cos KO(. - C, t )  + ~ C C O S  [K(x - Ct) + (I.]]. (14) 

The two constants Po and /3 are usually less than unity and I++ is a constant phase 
difference between the two currents. We shall be mostly interested in the influence of 
a second current on the trajectories of short waves originally trapped by the ‘basic’ 
current labelled ‘0’. Then, it is natural to transform to a frame of reference moving 
with the phase velocity C,. In this frame, the kinematic equations can be written as 

k = k [ p ,  M, sin K, x + pi2 sin (Kx + 652, t + $)I, (1 5 b)  

with S = K/K,  -Q/Q,, Q, = C, KO, 52 = CK; (SQ,)-l, which represents the time 
interval (the ‘ autocorrelation time ’) between two successive patterns of constructive or 
destructive interference of the current variations, plays a crucial role in the short-wave 
evolution. We would expect the evolution at small S (currents with closely similar 

FIGURE 3. Examples of WKB phase-space trajectories of capillary-gravity and short gravity waves in 
the field of an internal-wave-induced surface current (amplitude U,, phase velocity C,): (a)  
UJC, = 0.10, identical results with and without surface tension; (b) U,/C, = 0.69, surface tension 
ignored; (c )  UJC,  = 0.69, surface tension included. 
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FIGURE 4. (a) Three-dimensional phase portrait of a capillary-gravity wave with initial wavenumber 
k ,  in the field of two long gravity waves. (b, c)  Two-dimensional projections: (6) in the time- 
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characteristics) to significantly differ from the evolution at large 6 (currents with well 
separated characteristics). We will first illustrate this before doing a more detailed 
approximate analytical study. 

According to results for a single current, KO was taken as 0.44 rad cm-l. To have a 
small value of S, K was taken as 0.435 rad cm-l. Then 6 z 0.0057 and 1/6 z 176. Here, 
as well as in the next examples, values of C,, C, 0, and 0 were determined by applying 
the linear dispersion relation for a gravity wave. Po and /3 were taken as 0.05. Then, 
again, we are looking at approximate models of the kinematics of capillary-gravity 
waves in the orbital velocity fields of two gravity waves. 

Figure 4 shows the three-dimensional phase portrait and the two-dimensional 
projections in various planes with the initial wavenumber k,  = 12 rad ern-'. From 
figure 4 (b), the time interval which separates two successive complete interference 
patterns in the time evolution of the short-wave position and wavenumber is found to 
be about 173T,,, T, being the period of the 'basic' gravity wave. Then, the computed 
value S, of S is such that 1/6, z 173, which is a value very close to the theoretical value 
given above. As expected, other computations showed no dependence of the computed 
8, on either the initial wavenumber or the initial position. 

Figure 4(c) displays the short-wave trajectories in the WKB phase space. The closed 
orbit when a single long wave is present is also shown for comparison. With two long 
waves present, the trajectories are no longer closed : the short-wave packet exhibits 
orbital motions around a point which moves slowly away from the trough of the basic 
long wave. Finally, after a number of cycles, it jumps to the next trough to be trapped 
there during two successive separated time intervals T,/S. In detail, as shown, there are 
three different families of trajectories corresponding to the three time intervals above. 
By extending the computation to larger time intervals, no repetition of the patterns was 
found. 

It is of interest to note that the wavenumber modulation is significantly larger with 
two long waves than with one single long wave. This would be related to the 
modulation of the surface current amplitude. In practice, the dissipation effect by 
viscosity would be more effective with two long waves. 

Other computations made with 6-1 = 88 and 6-' = 27 confirm the previous result on 
the role of this parameter and the presence of wavenumber modulation larger than in 
the case of a single long wave. Depending upon 6, the short-wave packet undergoes 
many or few bounces in the trough of the basic wave before leaving this trough to move 
to the next ones. The detailed patterns in the WKB phase space change very 
significantly with 6 and cannot be predicted without carrying out a complete 
computation. 

The example above suggests that, if S is sufficiently high, i.e. KO and K depart 
significantly from another, the blockage effect would rapidly disappear. This is 
confirmed by the computational results at KO = 0.44 rad cm-l and K = 0.3 1 rad cm-' : 
S-' is then of order of 7. 

Figure 5 ,  which corresponds to the initial value of the short-wave wavenumber 
k,  = 12 rad cm-l at the initial position x, = L,/2, illustrates some main features of the 
results. 

As in figure 4(a),  the three-dimensional phase portrait is shown on figure 5(a). 

wavenumber plane (upper curve), in the time-position plane (lower curves), and (c) in the WKB 
plane. Trajectories in the presence of a single long wave are also shown as light line on (b) and broken 
line on (c). The three parts of the trajectories seen in (c)  correspond to successive time intervals: 
0 < t / T ,  < 75 (heavy line); 75 < t /T ,  < 230 (very heavy line); 75 < t /T ,  < 230 (light line). The limits 
of the intervals are shown by small arrows. S = 1/176; k, = 12 rad cm-l; x, = L,/2; b, = b = 0.05. 
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FIGURE 5(u, b). As figures 4(u) and 4(b) but with 8 = 1/7. 

Figure 5(b) shows the displacement with respect to the time the short wave leaves its 
initial position, moves to the next trough to be trapped there for a certain amount of 
time t,, moves to the next trough to be trapped again and so on. 

The entrapment time interval t ,  is found to be of order lo& which agrees in order 
of magnitude with the theoretical value of (8QJ'. During the entrapment time 
intervals, the wavenumber exhibits quite similar evolutions (figure 5 b). Such similarity 
is also noticeable in the WKB phase-space trajectory (figure 6a). However, in detail, 
no fully repetitive pattern can be found in these evolutions and trajectories. In fact, as 
shown on figure 6, there is a large variety of trajectories depending in particular upon 
the initial value of the short-wave wavenumber. Clearly, again, these trajectories 
cannot be predicted a priori, without carrying out a complete numerical computation. 

While no energy consideration is made here, the following preliminary comments are 
of interest concerning the specific practical examples above. For capillary-gravity or 
capillary waves the reflection as extremely short capillary waves would lead to a rapid 
dissipation by viscosity. Then, the waves would disappear almost instantly. However, 
in the presence of wind, this conclusion may be not valid. Indeed, using a very 
sophisticated visualization technique, able to resolve capillary waves down to + mm 
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FIGURE 6. As figure 4(c) but with: (a) k, = 12 rad cm-’, (b)  k ,  = 6.8377 rad cm-’ and (c)  
k ,  = 24.1491 rad cm-’. The heavy closed lines correspond to only one single long wave present. 

wavelength, Klinke & Jahne (1992) found significant energy levels for waves of a few 
millimetres wavelength. Apparently, such very short waves can be maintained at some 
quasi-equilibrium state by the wind. Unfortunately, the observational results appear 
difficult to interpret in terms of an energy balance equation. 

Trajectories similar to those of capillary-gravity waves over two short gravity waves 
can be found for 1 m wavelength gravity waves propagating in the field of two surface 
currents. Viscous dissipation is much less effective except in the case of a high pi value 
(see figure 3c). In this case, the wave groups would break before the very high- 
wavenumber range is reached. 

While the correct amplitude equations in these specific situations need still further 
- possibly very complicated - work, our first objective here is to look at the trajectories 
of the short waves in the presence of many surface flows of larger scales. In that respect, 
the analytical study which follows is concerned with a quite general problem. 

4. Approximate analytical models 
The examples treated numerically above give some insight into the effect of a second 

long wave on the trajectory of short-wave packets originally trapped in the trough of 
a first long wave. However, the numerical results are difficult to interpret in terms of 
simple physics. So it is of interest to develop models to look at general features of the 
trajectories, in the hope of achieving more insight. 

The second-order equation for the dimensionless displacement KO x can be derived 
from equation 15(a). No confusion being possible, this displacement will still be 
denoted as x. The equation is written 

-C,Ko/lo.isinx-CKo/l 
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FIGURE 7. Variations with respect to the wavenumber k of F(k) (-.-) and G(k) (--); F(k)/G(k)  is 
shown by a light line with external left ordinate for k from 0 to 40 rad cm-’; heavy line with internal 
left ordinate for k from 5 to 40 rad cm-l. 

The next step is to eliminate k from this equation. This is strictly possible only if the 
surface tension effect is ignored. In that case, the first term of the equation becomes 

where (g/k)l’’ and k / k  can be easily written in terms of x and t using (15). 
With the surface tension terms, this procedure breaks down. To avoid lengthy and 

tedious algebra, an approximate procedure is used to eliminate k in (16). k / k  can be 
evaluated at once in terms of x and t from 15 (b). Then, an attempt was made to relate 
( g / k  + yk)-3’2[6yk + 3(yk)’ - (g/k)’] to the first term of 15 (a) .  This was done by 
comparing the two functions 

and 

g l k  + Yk 
G(k) = !(g+$)’”(i+ 2 k  

F(k) = - 1 ( + yk)-’” [ 6yk + 3(ykI2 - (:)‘I. 
4 k  

They are displayed on figure 7 for k ranging from 0.01 to 40 rad cm-l. 
G(k) can be written 

G(k) = 4 k  1 (g + y k r ”  [4yg + 3 ( ~ k ) ~  + (g/k)’]  (19) 

so that 

Figure 7 also displays this ratio in the same range of k. As expected, for small k (gravity 
range), the ratio tends to 1 while for high k ,  it tends to - 1. Large variation is observed 
for k in the range 0.01 to about 5 rad cm-l. As shown, above the latter value, the 



The kinematics of short waves in surfacejows 

(4 
-1 02 

-1 03 

-1  04 

-1 05 

s 

0 100 200 300 400 

26 1 

-1.10 ' Y I 

0 10 20 30 40 50 

tlT, 

FIGURE 8. Time ( t )  evolution of r(k) = F(k)/G(k) at initial wavenumber k,  = 12 rad cm-' in the 
presence of two long waves with (a) 6 = 1/176 and (b) 6 = 1/7. 

ratio varies between about - 1.1 and - 1. To simplify the analysis, for k higher than 
5 rad cm-l the ratio will be taken as a constant, namely 

F(k) z rG(k). (21) 

This procedure will be justified later on. Then, 

k 
k 

x = -rK,-G(k)-/3,C,Ko~sinx-/3CKo . (22) 

Using (15) to express G(k) and k / k  in terms of x, i and t yields 

r 
2 

x = --/3,-0~sinx--/3L?,Q 

11 +- p,0,cosx+p0-cos - x + b Q , t + $  
2 ' [  2 (: 

x /3,QOsinx+/3L?sin -x+&Q,t+$ , (23) [ (: 11 
where 0, = C, KO, 0 = CK. 

Under the above approximation of the first term of (16), equation (23) represents the 
general second-order equation which governs the displacement of a short-wave packet, 
with initially prescribed position and velocity, in the field of two longer gravity waves. 

Before applying this equation to specific cases, we need first to justify (21). We recall 
that this is needed only for capillary-gravity waves. For pure gravity waves, (23) is 
exact with r = 1. 

At a given initial value k,  of k,  the effect of the long waves is to produce variations 
of k and then of r(k) = F(k)/G(k) .  Figure 8 displays such variations with 
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FIGURE 9. Comparisons between the time ( t )  evolution of short-wave displacements (with 
k ,  = 12 rad cm-l and x, = L,/2 in the field of two long waves with (a) 6 = 1/176 and (b )  6 = 1/7 as 
determined respectively from the exact system (1 5 )  (-) and the approximate equation (23) (---). 

k, = 12 rad cm-' and values of 6 of 1/176 and 1/7. As expected, the extent of the 
variations is quite small. A natural choice of a constant approximate value for r is the 
mean value of the variations. 

With the above values of 6, figure 9 shows a comparison between the displacements 
as determined by the exact system of equations (1 5) and by solving (23), Y being taken 
as the mean value r o f  the variations above. It is seen that the respective displacements 
fit each other very well for a quite long time duration. As we will be mostly interested 
in displacements over a short time, the approximation is fully justifiable. Note that the 
determination of solutions to (22) needs the initial ( t  = 0) value of the position x, and 
the velocity x,. This velocity is given by 

x, = ( g / k ,  + yko)"2 - + +pa c, cos x, +pccos P- c,, (24) G g/;:YkJ 

with P = (K/K,)x+6Q0t+II.. 
Three terms can be identified on the right-hand side of (23), namely 

(25 a) 
r 
2 

S,  = -bo-G?~sinx-/3Qoi2 

and 

S, = - 1 +- ,-@"Qosinx+&?sin PI, ( 3 
S - - ~ , Q , c o s x + ~ Q - c o s P  [p,Q,sinx+pQsinP]. 

3 - 2  T [  K I 
The relative importance of these terms on the displacements was studied numerically. 

It was found that S,  is much less important than the other two. The reason for this was 
not investigated further. 

Here, we are mostly interested in the influence of a second long wave on the 
displacement of short-wave packets initially strongly trapped in the trough of a first 
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FIGURE 10. As figure 9 except that equation (23) is replaced by (26). 

long wave. For such short waves, the displacement x and the velocity R would be small 
during a short time interval. More precisely, x 6 1, while x will be of order /3,Q,. 

First, retaining terms of order /3, and /3, the right-hand side of (23) reduces to S,: 

(: %) (26) 
r 

2 M -,402Q~sinx-/3Q,Q -+- sin(ax+6Q0t+$), 

with a = K/K,. 
The validity of this equation was tested by comparison with the result of the 

exact system of equations (15). Figure 10 illustrates the comparison, again at 
k,  = 12 rad cm-' and 6 = 1/176 and 1/7. 

Up to about t = l O T ,  equation (26) predicts well the short-wave-packet displacement. 
This was confirmed at other values of 6. At larger time, (26) overestimates the 
displacements which, in addition, are more and more phase shifted with respect to the 
exact solution. 

Next, we are interested in short-wave packets which exhibit a small displacement 
around their initial position x,. Changing the variable to 

1 = x-xo, 
equation (26) becomes 

- 
(28) 

r Po 52: sin (2  + x,) - /3Q, Q sin [a(2 + xo) + SQ, t + $1. x = -  

With X 4 1 ; sin X = 2 ;  sin mi? M 05, cos i? % cos a? % 1, equation (28) reduces to 

x +  p,-Q~cosx,+apQoQ -+- cos(axo+6Q,t+$) x [ :  (: %) 1 
r 

= -Po Qi sin x, - /3Q, Q sin (ax, + SQ, t + $). (29) 

Defining the variable 7 by 
27 = x-axo-$h-6Q,t 
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FIGURE 11. As figure 9(a) for S = 1/176 except that (23) is replaced by: (a, b), the inhomogeneous 
Mathieu equation (30) (heavy lines); (c) the homogeneous Mathieu equation (30) without the forcing 
term) (heavy line). The lighter lines are the exact solution, (15). 

we have 

and 

Simple algebra yields 

sin 27 = sin (ax, + SO, t + $), cos 27 = - cos (ax, + SO, t + $). 

d 2 1  
-+(a- bcos 27) 2 = - (c+ b’sin 27), 
dr2 

with 
cosx,, b = ap-(--)”(i+:), no 2 sz 

52 SO, 

sinx,, b’ = b/a. 

We recognize equation (30) as a Mathieu equation with a forcing term. 
Figures 11 and 12 illustrate the results of a preliminary investigation based on 

equation (30), again with S =  1/176 and 1/7. As in the previous examples, 
k,  = 12 radcm-‘. With S =  1/176, as shown on figure l l(a),  the short-wave 
displacement predicted by (30) fits well the displacement computed from the exact 
system (15) up to values of t /T ,  of order 20. Surprisingly, for a short time interval, (30) 
appears a better approximation than (26) (see figure 10a). However, at larger time, (30) 
overestimates the displacement more than equation (26). 

With 6 % 1/176, a is clearly much larger than unity and b is of order a. This is the 
well-known case where the WKB approximation applies (see e.g. Morse & Feshbach 
1953). 

The approximate solution to (30) is 
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FIGURE 12. (a) As figure 9(b) for S = 1/7 except that (23) is replaced by (30); (b )  -, only the 
first long wave present, ... , solution to the exact system (15). 

with (47) = (1 - b/a  COS 2 ~ ) ~ ’ ~ .  (32) 

From the physical viewpoint, the approximation corresponds to an autocorrelation 
period much larger than the basic period &. The two first terms of (31) mean that 
the short-wave packet moves back and forth many times in the trough of the long 
waves which evolve slowly. With b 5 a, the frequency w approaches zero at each 
autocorrelation cycle, and the short-wave packet would escape blockage at each cycle. 
As shown in figure 11 (b), the solution of (30) confirms the above prediction of the 
WKB solution, namely that the displacement exhibits cycles governed by the 
autocorrelation time. As expected from (31), the driving term in (30) would not 
influence the cycle timescale. This is confirmed by figure 11 (c) which shows the solution 
of the homogeneous form of (30). In fact, the forcing term in this equation, which 
corresponds to the third term in (31), is responsible for the slow drift of the mean 
displacement of the short-wave packet within each cycle. The mean displacement then 
moves away from the initial position. At the end of each cycle, the short wave may 
temporarily leave the initial long-wave trough but will rapidly come back to this 
location. This happens for the homogeneous equation as well. 

Finally, the homogeneous and the forced Mathieu equation cannot predict one of 
the main features of the short-wave displacement as given by the exact solution, namely 
that the short-wave packet can effectively leave the initial long-wave trough to jump to 
other troughs. The jumps are clearly due to nonlinear effects and were also found in 
the solutions of (26). 

With S = 1/7, equation (30) again predicts well the displacement for a short time 
interval (figure 12a). The following remark could be of interest: as shown on figure 
12(b), up to the reflection point (see figure 5b) the second wave does not play a 
significant role, but once this point is reached, the displacement has a tendency to 
exhibit an exponential evolution. This is true for the exact displacement (equation (15)) 
as well as for the approximate result from equation (30). Then, as seen in figure 12(a) 
the short wave jumps to the next basic long-wave trough. Again, this large displacement 
cannot be predicted by the Mathieu equation and is clearly due to nonlinear effects in 
the exact solution. As a result the short wave becomes rapidly untrapped. 
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FIGURE 13. Short-wave trajectories in WKB phase space (a) and time evolutions of the wavenumber 
(b)  and the position ( c )  corresponding to two slightly different initial conditions: k ,  = 14 rad cm-', 
xo = L,/2 (light lines); k, = 14+0.01 rad cm-', x, = L,/2+0.01 (heavy lines). (d) Frequency 
spectrum of the wavenumber variations with k, = 14 rad cm-', in the presence of a single long wave 
(lower curve) and in the presence of two long waves (upper curve 8 = 1/7); the dots display the 95 % 
confidence intervals. 
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Finally it may be of interest to note that, at large time, the trajectories shown in 
figures 5 and 6 suggest some chaotic regime such as described by Thompson & Stewart 
(1986): ‘certain patterns in the waveform repeat themselves at irregular intervals, but 
there is never exact repetition’. 

The existence of such a regime is better illustrated in figure 13 which shows 
trajectories and time evolutions of the wavenumber and the position corresponding to 
slightly different initial conditions. It is seen that the trajectories remain close to each 
other for some time and then diverge rapidly to become uncorrelated. This occurs for 
the time evolutions as well. In addition, as shown on figure 13(d), in the presence of 
a single long wave, the frequency spectrum of the wavenumber variations is discrete, 
consistent with their periodic feature. With a second long wave present, the spectrum 
becomes continuous. This also suggests a chaotic regime. 

The detailed examination of this regime, which would include in particular Poincare 
maps, is beyond the scope of this first work but would be of great interest. Much effort 
could be devoted to the physical interpretation of the expected results of such an 
investigation. 

5 .  Concluding remarks 
This work constitutes a first step in investigations concerning the dynamics of short 

surface waves propagating over a large-scale surface velocity field in the realistic case 
where this field contains many harmonic components. The work is limited to the 
kinematic aspect. While specific examples are treated, the results would be of general 
interest as partially proved by the similarity of results found for capillary-gravity 
waves over long gravity wave and for 1 m wavelength range gravity waves over a 
surface current related to internal waves. The fact that a driven Mathieu equation 
governs the short-wave displacement at a short time interval is also of general 
importance and will be exploited in future work. 

The main result of the investigation is that the presence of a second surface velocity 
field can strongly modify the trajectories of the short-wave packets from what happens 
in the presence of only one single field. In particular, short waves well trapped by this 
field become untrapped within some time interval. The parameter controlling this 
interval is clearly identified. 

Other results, not reported here, show that the short-wave packets can be removed 
from blockage by nonlinear dispersion or the presence of other short waves. Also, 
variability in the phase @ (see (16)) produces the same effect. 

The case of many (more than two) large-scale surface velocity fields, eventually 
random, is of course of crucial interest in practice, but probably very difficult to handle. 
As far as the blockage process is concerned, the spectral bandwidth of the velocity 
variations would be the generalization of the parameter 8 above: for narrow 
bandwidth, temporary blockage would occur while for wide bandwidth, free 
propagation of the short waves would be expected. The latter situation would occur 
often in natural conditions where the short waves suffer the joint effects of the 
dominant long waves and surface currents at much larger characteristic scales than 
these dominant waves. 

From the observational viewpoint, temporary blockage of capillary or capillary- 
gravity waves at fixed phase of the dominant gravity waves is commonly visually 
observed in laboratory facilities. After a certain time, these short waves are removed 
from blockage. This may be related to the present analysis as the dominant wave can 
be, to first approximation, considered as a modulated wavetrain. But other effects such 
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as nonlinear dispersion may be involved. The important fact is the existence of a local 
and instantaneous dispersion which is generally not accounted for in most experimental 
and theoretical studies of water surface waves. Strictly, the shorter surface wave fields 
become multidispersive so that the interpretation of experimental results on the 
dispersion relation may be very ambiguous as the spatio-temporal variations are 
ignored. 

Finally, the existence of local and instantaneous dispersion may be of interest in 
studying some intermittent events occurring in the short surface wave fields. A typical 
example is the collectivization of short waves trapped at a certain phase of the surface 
velocity field variations. If nonlinear effects are considered, this would lead to 
important consequences due to short-wave interactions. 

The obvious general problem to be considered in future works deals with the 
dispersion of an ensemble of short waves in the presence of an ensemble of surface 
flows of larger scales. Three-dimensional effects as well as the amplitude evolution 
would need to be included. This clearly constitutes a formidable task which will 
possibly need many steps of investigation. Short waves generated by the wind are of 
main interest in practice. But then a particular difficulty arises as the amplitude 
equation is still the subject of a large controversy. 

The simple examples treated here illustrate the important effects of the unsteadiness 
in the dispersion of the short waves and possibly in their dynamical evolution in 
general. Such effects may be missed by simply looking at averaged properties. From the 
experimental viewpoint, extensive use of the recently developed methods to process 
unsteady or non-stationary data would reveal new fundamental aspects of the physics 
of surface waves. First applications of such methods (Chapron & Ramamonjiarisoa 
1992; Ramamonjiarisoa, Chapron & Branger 1993) indeed show the presence of 
striking transient mechanisms. 

The author is indebted to Dr Erik Mollo-Christensen for his invaluable help in 
improving a first draft manuscript of this paper. It is also a pleasure to acknowledge 
Dr 0. M. Phillips for helpful discussions on the subject. Many comments and 
suggestions of the referees about various aspects of the paper are greatly appreciated. 
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